Existence of solutions to the Navier-Stokes Cauchy problem in the L^3 setting

Francesca \mathbf{Crispo}^1 and Paolo Maremonti^2

¹University of Campania "L. Vanvitelli", Department of Mathematics and Physics, Italy

²University of Campania "L. Vanvitelli", Department of Mathematics and Physics, Italy

Corresponding/Presenting author: francesca.crispo@unicampania.it

Talk Abstract

We investigate on the existence of solutions to the Navier-Stokes Cauchy problem with initial datum u_0 in L^3 and divergence free. It is known that this kind of result is not new. Indeed, there is a wide literature on it, with a first contribution due to T. Kato in [4]. Our chief goal is to establish the existence interval (0,T) by uniquely considering the size of the initial datum in L^3 and the absolute continuity of $|u_0(x)|^3$.

A similar analysis has been developed in the recent paper [1], where it is employed the dimensionless weighted functional $||U_0||_{wt}^2 := \sup_x \int_{\mathbb{R}^3} \frac{U_0^2(y)}{|x-y|} dy$ and, in the set L_{wt}^2 , where $|| \cdot ||_{wt} < \infty$, the subset of the so called Kato class K_3 is considered. In this regard, we recall that $|| \cdot ||_{wt}$ is not equivalent to the L^3 -norm.

The result, proved in paper [2] for the Cauchy problem, will represent the starting point for the same result, in a forthcoming paper [3], in the case of the initial boundary value problem in $(0,T) \times \Omega$, where $\partial \Omega$ is assumed a sufficiently regular compact set, or is the half-space.

Keywords: Navier-Stokes equations; existence; regular solutions.

References

- [1] Crispo, F.; Maremonti, P. Navier-Stokes Cauchy problem with $|v_0(x)|^2$ lying in the Kato class K_3 , *Mathematics* **2021**, 9 (11).
- [2] Crispo, F.; Maremonti, P. A new proof of existence in the L³-setting of solutions to the Navier-Stokes Cauchy problem, arXiv:2204.10954 [math.AP].

- [3] Crispo, F.; Maremonti, P. A new proof of existence in the L^3 -setting of solutions to the Navier-Stokes initial boundary value problem, forthcoming.
- [4] Kato T., Strong L^p -solutions of the Navier-Stokes Equations in \mathbb{R}^m , with applications to weak solutions, *M* ath. Z. **187** (1984) 471-480.